

Provably Improving Generalization of Few-shot Models with Synthetic Data

Lan-Cuong Nguyen, Quan Nguyen-Tri, Bang Tran Khanh, Dung D.Le, Long Tran-Thanh, Khoat Than

Background and Motivation

Problems:

- Training with synthetic data faces performance degradation due to distribution gap between real and synthetic data.
- Recent methods narrowed the distribution gap but are heuristic-driven, lacking theoretical guarantees.

Research questions:

- What properties can indicate the goodness of a synthetic dataset?
- How to generate a good synthetic dataset?
- How to efficiently train a predictor from a training set of both real and synthetic samples?
- How can the quality of a generator affect the generalization ability of the trained predictor?

Contributions

- 1. **Theory:** Two novel generalization bounds shows that for good generalization, synthetic data must be both similar to real samples and diverse enough to ensure local robustness.
- Methodology: A novel loss function and training paradigm, guided by theoretical bounds, to jointly optimize data partitioning and model training for minimizing generalization errors.
- 3. **Empirical Validation:** Our method consistently outperforms state-of-the-art few-shot image classification methods on multiple datasets when using synthetic data.

Definitions

S and *G* are real and synthetic datasets sampled from real and synthetic distribution, respectively. *h* is a model.

Model-based discrepancy:

$$ar{d}_h(G, S) = rac{1}{|G|.|S|} \sum_{m{u} \in G, m{s} \in S} \|m{h}(m{s}) - m{h}(m{u})\|$$

Local robustness in the area A:

$$\mathcal{R}_h(s, \mathcal{A}|P) = \mathbb{E}_{z \sim P}[\|h(z) - h(s)\| : z \in \mathcal{A}].$$

Theoretical Analysis

Generalization Bounds:

$$F(P_0, \boldsymbol{h}) \leq L_h \sum_{i \in \boldsymbol{T}_S} \frac{g_i}{g} \left[\bar{d}_h(\boldsymbol{G}_i, \boldsymbol{S}_i) + \mathcal{R}_h(\boldsymbol{G}_i, \boldsymbol{\mathcal{Z}}_i \mid P_g) \right] + A$$

Asymptotic Cases:

$$F(P_0, \boldsymbol{h}) \leq L_h \sum_{i \in T_G} \left[p_i^g \mathcal{R}_h(\boldsymbol{S}_i, \mathcal{Z}_i | P_g) + \frac{n_i}{n} \mathcal{R}_h(\boldsymbol{S}_i, \mathcal{Z}_i | P_0) \right] + A_1$$

Methodology

Overall algorithm pipeline

$$\mathcal{L} = \lambda F(S, h) + F(G, h)$$

$$+ \lambda_1 \sum_{i \in T_S} \sum_{s \in S_i, g \in G_i} \frac{g_i}{g} \frac{1}{|G_i||S_i|} ||h(s) - h(g)||$$

$$+ \lambda_2 \frac{1}{g} \sum_{i \in T_S} \sum_{g_1, g_2 \in G_i} \frac{1}{g_i} ||h((g_1) - h(g_2)||$$

Algorithm 1 Fine-tuning few-shot models with synthetic data

Input: Real dataset S, number g of synthesis samples, (conditional) Pretrained generator models G

- 1: Initialize centroids z for every local area
- 2: Fine-tuning generator \mathcal{G} by real dataset S with LoRA
- 3: Generate q synthetic images from generator \mathcal{G}
- 4: Use K-means clustering on both real and synthetic images to obtain partition $\Gamma(\mathcal{Z})$
- 5:
- 6: for each mini-batch A do
- 7: Assign datapoints to their nearest clusters
- 3: Train the model h using the loss function \mathcal{L} on the combined dataset $S_A \cup G_A$ that includes both real data and synthetic data. \triangleright Refer to equation 7.
- 9: end for

Loss function

Experiments Results

Method	R	S	IN	CAL	DTD	EuSAT	AirC	Pets	Cars	SUN	Food	FLO	Avg
CLIP (zero-shot)			70.2	96.1	46.1	38.1	23.8	91.0	63.1	72.2	85.1	71.8	64.1
Real-finetune	√		73.4	96.8	73.9	93.5	59.3	94.0	87.5	77.1	87.6	98.7	84.2
IsSynth	V	1	73.9	97.4	75.1	93.9	64.8	92.1	88.5	77.7	86.0	99.0	84.8
DISEF	√	1	73.8	97.0	74.3	94.0	64.3	92.6	87.9	77.6	86.2	99.0	84.7
DataDream _{cls}	✓	1	73.8	97.6	73.1	93.8	68.3	94.5	91.2	77.5	87.5	99.4	85.7
$DataDream_{dset}$	V	1	74.1	96.9	74.1	93.4	72.3	94.8	92.4	77.5	87.6	99.4	86.3
Ours (lightweight)	V	1	73.7	97.9	75.5	94.2	71.5	94.5	90.2	77.6	90.0	99.0	86.4
Ours (full)	√	1	73.8	97.3	74.5	94.7	74.3	94.6	93.1	77.7	90.4	99.3	87.0

Main experiment results of 16-shot fine-tuning settings

Ablation Studies

Table 2.	Ablation	of	the	loss	function	components.

Discre.	Rob.	EuroSAT	DTD	AirC	Cars	
		93.5	74.1	72.5	92.6	
	1	94.6	74.4	73.1	93.1	
✓		94.3	74.3	74.8	93.0	
1	1	94.7	74.5	74.3	93.1	

Table 3. Methods performance on CLIP-Resnet50.

Methods	AirC	Cars	Food	CAL
Real fine-tune	61.57	78.86	63.52	93.29
IsSynth	70.94	90.82	68.77	94.54
DISEF	65.99	79.18	70.10	94.34
DataDream _{cls}	79.21	92.99	66.70	94.37
$DataDream_{dset}$	81.46	93.30	66.63	94.62
Ours	82.67	93.71	70.35	94.17

Figure 3. Results with increasing number of clusters on 4 datasets

Paper QR:

THANK YOU!

